Interazione Radiazione - Materia

Antonio Di Domenico

Dipartimento di Fisica

Università di Roma "La Sapienza"

1

Indice

Concetti preliminari

grandezze fondamentali e loro unità di misura, sezione d'urto, cammino libero medio

> Interazioni delle Particelle Cariche

particelle pesanti, elettroni e positroni ionizzazione, scattering coulombiano, irraggiamento

Interazioni dei Fotoni

effetto fotoelettrico, Compton, creazione coppie e⁺e⁻

1. Grandezze fondamentali

Energia E [eV] – energia acquisita da un elettrone sottoposto alla d.d.p. di 1 Volt

1 eV = 1.602 x 10⁻¹⁹ J Multipli: keV, MeV, GeV, TeV, ...

Massa a riposo m [eV/c²] – misurata tramite E = mc²

 $1 \text{ eV/c}^2 = 1.78 \text{ x } 10^{-36} \text{ kg}$

Impulso p [eV/c] – misurata tramite $E^2 = p^2 c^2 + m^2 c^4$ 1 eV/c = 0.535 x 10⁻²⁷ kg · m/s

2. Sorgenti radioattive

2 parametri fondamentali:

♦ Attività – n. di decadimenti al secondo \rightarrow Becquerel (Bq)

1 Bq = 1 dec./s

N.B. – vecchia unità: Curie (Ci) \rightarrow 1 Ci = 3.7 x 10¹⁰ dec./s

Costante di decadimento – velocità di decadimento

$$\frac{\mathrm{dN}}{\mathrm{dt}} = -\lambda \,\mathrm{N} \qquad [\lambda] = \mathrm{t}^{-1}$$

Grandezze derivate da λ :

• vita media τ - intervallo di tempo dopo il quale il n. iniziale di nuclei si è ridotto di un fattore e $\tau = \lambda^{-1}$

 tempo di dimezzamento t_{1/2} - intervallo di tempo dopo il quale metà dei nuclei iniziali è decaduta

 $t_{1/2} \texttt{=} \tau ~ \texttt{ln2} \cong \textbf{0.693} ~ \tau$

Fasci di particelle \rightarrow Flusso Φ - n. particelle per unita' di tempo e di area

 $[\Phi] = t^{-1} L^{-2}$

3. Sezione d'urto misura della probabilità che si verifichi un certo processo d'interazione

Fascio di particelle che incide su un bersaglio :

Ipotesi – fascio molto + esteso del bersaglio;

 particelle distribuite in modo uniforme nello spazio e nel tempo

Probabilita' di colpire il bersaglio:

$$P = \frac{\text{proiezione del bersaglio su S}}{\text{Superficie trasversa S}} = \frac{\sigma}{S}$$

Numero particelle che colpiscono il bersaglio per unita' di tempo e di area:

$$\Phi \text{ diffuso} = \Phi \text{ incidente x P} = \frac{\sigma \Phi_0}{S}$$

 ✓ natura casuale del processo → valori medi su un numero elevato di intervalli di tempo di durata finita;

✓ $[\sigma] = L^2 \rightarrow \text{posso immaginarla come l'area del centro di diffusione proiettatta sul piano ⊥ alla direzione del fascio;$

✓ ordini di grandezza:

- $\sigma_{\text{atomica}} \approx 10^{-24} \text{ cm}^2$ (= 1 barn)
- nucleo di raggio r $\rightarrow \sigma_{geom.} = \pi r^2$
 - $r \approx 10^{-13}$ cm (= 1 fm) $\rightarrow \sigma_{geom} \approx 3 \times 10^{-26}$ cm² = 30 mb

Bersaglio reale: dimensioni finite \rightarrow molti centri diffusori

lpotesi – centri diffusori distribuiti uniformemente;

- bersaglio sottile (spessore = dx) \rightarrow piccola probabilità che un centro diffusore sia esattamente dietro un altro

N = n. centri/Volume \rightarrow n. centri su superficie S \perp alla direzione di propagazione del fascio = N S dx

Probabilità di 1 collisione nello spessore dx :

$$dp = \frac{\Phi \text{ diffuso}}{\Phi \text{ incidente}} = \frac{\sigma \Phi_0 / S}{\Phi_0} \text{ N S } dx = \underbrace{N \sigma}_{W} dx$$

$$\textit{N.B.} - \text{ densità centri diffusori } \mathsf{N} \left\{ \begin{array}{l} \mathsf{nucleo} \rightarrow \rho \; \mathsf{N}_0 \,/\, \mathsf{A} \\ \\ \mathsf{elettroni} \rightarrow \rho \; \mathsf{N}_0 \,\mathsf{Z} \,/\, \mathsf{A} \end{array} \right.$$

- ρ = densità materiale;
- N₀ = n. di Avogadro (6.02 x 10²³);
- A = n. di massa (n. protoni + n. neutroni);
- Z = n. atomico (n. elettroni)

Rivelazione particelle diffuse \rightarrow apparato di dimensioni finite

4. Cammino Libero Medio

Situazione reale: bersaglio di spessore finito (arbitrario) x

Calcolo della probabilità che la particella non subisca interazioni in x : probabilità di sopravvivenza

- P₀(x) = probabilità di 0 interazioni in x
- w dx = probabilità di 1 interazione in [x, x + dx]
- \rightarrow probabilità di non avere interazioni in [0, x + dx]:

$$P_0(x + dx) = P_0(x) (1 - w dx)$$

probabilità di avere 1 interazione ovunque entro x

 $P_1(x) = 1 - P_0(x) = 1 - e^{-wx}$

probabilità di avere 1 interazione in [x, x + dx] essendo sopravvissuto entro x

$$P'_{1}(x) dx = P_{0}(x) w dx = w e^{-wx} dx$$

cammino libero medio : distanza media percorsa dalla particella entro il mezzo senza subire collisioni

$$\ell = \frac{\int dx \ x \ P_0(x)}{\int dx \ P_0(x)} = \frac{\int dx \ x \ e^{-w \ x}}{\int dx \ e^{-w \ x}} = \frac{1}{w} = \frac{1}{N \sigma}$$

$$P_0(x) = e^{-x/\ell}$$

N.B. – w e ℓ dipendono da : interazione (σ) & materiale (N) ;

 $- w = coefficiente d'assorbimento [w] = L^{-1};$

- spessore attraversato in termini di massa equivalente d $\xi = \rho dx$ \rightarrow coefficiente d'assorbimento di massa: $\mu = w / \rho$

Radiazioni (Particelle)

4 tipi fondamentali di radiazioni (particelle) i cui processi d'interazione con la materia sono classificabili in base alle loro proprietà elettromagnetiche (e la loro massa)

Particelle Cariche

- 1. collisioni inelastiche con e-atomici
- 2. diffusione elastica dal nucleo atomico
- 3. reazioni nucleari
- 4. irraggiamento (bremmstrahlung) nel campo coulombiano del nucleo
- 5. emissione radiazione Čerenkov

- perdita d'energia
- ✤ deflessione della traiettoria

Particelle Pesanti

 ΔE essenzialmente tramite collisioni con e⁻ atomici ($\sigma \approx 10^7$ barn)

Collisioni : i. soft \rightarrow eccitazione atomica ii. hard \rightarrow ionizzazione atomica (se e⁻ prodotto ionizza: knock-on)

Massimo trasferimento d'energia nella collisione:

Particelle Pesanti

1. collisioni inelastiche con e-atomici

$$m \gg M \rightarrow T^{max} \cong 4 \frac{M}{m} T_i$$
 piccola δE nella singola collisione

elevata densità del mezzo attraversato \rightarrow grande n. di collisioni per cammino unitario \rightarrow fluttuazioni molto piccole nella ΔE

possibile utilizzare il concetto di energia media persa per unità di cammino: stopping power dE/dx

2. diffusione elastica dal nucleo atomico ($\sigma_2 < \sigma_1$)

$$m \ll M \rightarrow T^{max} \cong 4 \frac{m}{M} T_i$$
 ancora piccola δE

Stopping Power

- i. e⁻ libero e in quiete
- ii. e⁻ si muove poco durante l'interazione
- iii. particella incidente non deflessa dall'interazione: M (= m_e) « m

Simbologia:

Ipotesi

- particella incidente: $v = velocità iniziale (\beta = v/c)$
 - q = carica elettrica (in unità di e)

mezzo attraversato:

- N_e = densità e⁻ atomici
- requenza media del moto orbitale degli e⁻ atomici

Stopping Power

1) Teoria Classica (Bohr)

 $(\gamma = (1 - \beta^2)^{-1/2})$

$$-\frac{dE}{dx} = 4\pi N_e \frac{q^2 e^4}{m_e v^2} \ln\left(\frac{\gamma^2 m_e v^3}{q e^2 v}\right)$$

2) Teoria Quantistica (Bethe & Bloch)

$$-\frac{dE}{dx} = 0.1535 \rho \frac{Z q^2}{A \beta^2} L (\beta)$$
$$I = hv =$$

$$L(\beta) = ln\left(\frac{2\gamma m_e r r m_e}{l^2}\right) - 2\beta^2$$

= hv = potenziale di
 eccitazione medio

W_M = max. energia trasferita nella collisione 21

Stopping Power

Campo elettrico della particella incidente polarizza gli atomi lungo il cammino $\rightarrow e^{-}$ lontani sentono campo elettrico + debole \rightarrow collisioni con tali e⁻ danno contribuito alla perdita d'energia < di quello previsto dalla Bethe & Bloch

Alti $\beta \rightarrow$ maggiore influenza delle collisioni con e⁻ lontani \rightarrow effetto densitá riduzione dello stopping power \rightarrow correzione δ (? densitá: polarizzazione del mezzo cresce con ρ !)

 $\beta \leq$ velocità orbitale degli e⁻ atomici \rightarrow non è più possibile considerare gli e⁻ stazionari rispetto alla particella incidente \rightarrow correzione di shell C

$$L(\beta) \rightarrow L(\beta) - \delta - 2 \frac{C}{Z}$$

Mass Stopping Power

N.B. – conveniente riesprimere lo stopping power in funzione dello spessore in termini di massa equivalente $\xi = \rho x$

$$x \rightarrow \xi \qquad \longrightarrow \qquad -\frac{dE}{d\xi} = -\frac{1}{\rho} \frac{dE}{dx} = q^2 \frac{Z}{A} F(\beta,I)$$

mass stopping power
per valori di Z non troppo diversi
$$\begin{cases} \frac{Z}{A} \sim \text{costante} \\ \text{debole dipendenza} \\ \text{da I (Z) (logaritmica)} \end{cases}$$
$$\rightarrow \qquad -\frac{dE}{d\xi} \sim \text{indipendente dal materiale}$$

Mass Stopping Power

Mass Stopping Power vs. Energia particella incidente

Mass Stopping Power

Differenza fondamentale con le particelle pesanti: causa piccolo valore di m_e diviene importante l'irraggiamento !!

1. Collisioni inelastiche con e- atomici

meccanismo uguale a quello per particelle pesanti, ma con 2 differenze sostanziali:

- non più valida l'ipotesi che la particella incidente si mantiene sulla traiettoria iniziale
- urto tra particelle identiche → modifiche di natura puramente quantistica: indistinguibilità

modifiche nella Bethe - Bloch

 $W_{M} = T_{i} / 2$ L (\beta) \rightarrow L_{e} (\beta) \neq L (\beta)

$$-\frac{dE}{dx} = 0.1535 \ \rho \ \frac{Z}{A} \frac{1}{\beta^2} \ L_e(\beta)$$
$$L_e(\beta) = \ln\left(\frac{m_e^2 (\gamma^2 - 1)^2}{2 \ |^2}\right) + F(\gamma) - \delta - 2 \ \frac{C}{Z}$$

dove la funzione F è diversa per elettroni e positroni

2. Bremmstrahlung nel campo coulombiano del nucleo

accelerazione nel campo del nucleo atomico \rightarrow deflessione della traiettoria \oplus emissione di radiazione e.m. (fotoni)

$$N.B. - \frac{\sigma_{B}^{(e)}}{\sigma_{B}^{(\mu)}} = \frac{m_{\mu}^{2}}{m_{e}^{2}} = 4 \times 10^{4}$$
 bremms. importante
solo per e[±]
(con T > 10 MeV)

Perdita d'energia di e^{\pm} di energia iniziale $E_0 (= hv_0)$

$$-\frac{dE}{dx}\Big|_{B} = N \int_{0}^{v_{0}} \frac{dv}{dv} hv \frac{d\sigma}{dv} (E_{0}, v) = N E_{0} \Phi_{R}$$

N.B.
$$-\frac{d\sigma}{dv} = \frac{G(Z)}{v} \longrightarrow \Phi_R$$
 dipende solo dal materiale

Confronto tra le perdite di energia associate alle Collisioni atomiche e alla Bremmstrahlung

2 parametri importanti :

1. Energia critica E_c

energia particella incidente per la quale risulta

$$-\frac{dE}{dx}\Big|_{Coll.} = -\frac{dE}{dx}\Big|_{B}$$

 $E > E_c \rightarrow domina Bremmstrahlung$

$$e^{\pm}$$
 $E_{c} \sim \frac{800}{Z}$ MeV (Bethe & Heitler)

2. Lunghezza di radiazione X_0

$$-\frac{dE}{dx}\Big|_{B} = N E \Phi_{R} \qquad \longrightarrow \qquad -\frac{dE_{B}}{E} = N \Phi_{R} dx$$

Limite di energie elevate:

dominano perdite d'energia per Bremmstrahlung

 $\rightarrow \Phi_R$ indipendente da E

$$E = E_0 e^{-x/X_0} \qquad X_0 = \frac{1}{N \Phi_R}$$

 $(X_0 = \text{cammino necessario affinché } E \rightarrow E / e)$

$$N.B. - t = \frac{x}{X_0} - \frac{dE}{dt} = E$$

i.e. in termini della variabile t la perdita d'energia per Bremmstrahlung è indipendente dal materiale

$\Xi_0 = \rho X_0$))	X ₀ (cm)	Ξ ₀ (g · cm ⁻²)	E _c (MeV)
	Air	30050	36.20	102
	Pb	0.56	6.37	9.51
	AI	8.9	24.01	51.0
	Nal	2.59	9.49	17.4

Sezione d'urto « di quella relativa alle collisioni con gli e- atomici

>
$$\sin^4 \frac{\theta}{2}$$
 al denominatore

collisioni con piccole deviazioni sono quelle più probabili

 \succ M » m \rightarrow piccolo trasferimento d'energia al nucleo

particella nell'attraversare il materiale segue percorso random a zig-zag → effetto netto: deviazione dalla traiettoria iniziale

D = n. medio di diffusioni all'interno del materiale \rightarrow 3 regimi :

- i. Single : assorbitore molto sottile → Probabilità (D > 1) « 1
 → valida la formula di Rutherford
- ii. Plural : D < 20 → caso più difficile da trattare: né Rutherford, né metodi statistici sono applicabili
- iii. Multiple: D ≥ 20 → caso più comune: se l'energia persa nella singola collisione è piccola posso applicare metodi statistici → calcolo della distribuzione di probabilità per l'angolo di deflessione totale in funzione dello spessore di materiale attraversato

Multiple Scattering: trascuro le diffusioni a grande angolo ($\theta > 10^{\circ}$) \rightarrow approssimazione gaussiana

$$P(\theta) \propto \exp\left(-\frac{\theta^2}{\langle \theta^2 \rangle}\right)$$

$$< \theta^2 > = \int d\Omega \ \theta \ P(\theta)$$

N.B. - Stima empirica per $< \theta^2 >$

 Ipotesi
 i.
 Z > 20

 ii.
 $10^{-3} X_0 < x < 10 X_0$

$$\Rightarrow \qquad <\theta^2 >^{\frac{1}{2}} \sim \frac{21 \text{ q}}{p \text{ [MeV/c] }\beta} \left(\frac{x}{X_0}\right)^{\frac{1}{2}} \qquad \text{[rad]}$$

Livello di confidenza di questa formula ~ 5 %. Diventa ~ 20 % per bassi β e alti Z

N.B. - presenza di X₀ nella formula è puramente accidentale: nessuna relazione tra Bremmstrahlung e il Multiple Scattering

Elettroni: $m_e \ll M \rightarrow alta$ probabilità di scattering a grande angolo \rightarrow probabilità non trascurabile di backscattering \rightarrow albedo $\eta = N_{back} / N_{inc}$ può essere dell'ordine di 0.8 !!

- 1. effetto fotoelettrico
- 2. effetto Compton (inclusi Thomson e Rayleigh)
- 3. produzione di coppie e⁺/e⁻
- 4. reazioni nucleari (trascurabili)
- ✤ 1 ⊕ 2 ⊕ 3 → rimozione fotone dal fascio → fotoni che emergono dal materiale lungo la stessa direzione d'ingresso sono quelli che non hanno interagito → no degradazione in energia ma solo attenuazione nell'intensità:

$$| = |_0 e^{-w x}$$
 $w = f(Z) \propto \sigma_{tot}$

1. Effetto Fotoelettrico

assorbimento completo del fotone da parte di un elettrone atomico \rightarrow espulsione elettrone di energia $E = hv - E_b$ \downarrow energia di legame dell'elettrone

emissione $e^- \rightarrow$ creazione di uno ione con "vacanza" in una delle shell \rightarrow riempimento della vacanza da parte di un e^- libero e/o tramite riarrangiamento degli e^- atomici \rightarrow emissione di raggi X

N.B. - processo dominante per $E_{\gamma} = hv < 100 \text{ keV}$

Edge ad energia maggiore $\rightarrow e^{-}$ che risiede nella shell più interna (K). Edges ad energie minori per gli e^{-} che risiedono nelle shell più esterne (L,M, ...)

N.B. - forte dipendenza della sezione d'urto da $Z \rightarrow$ materiali ad alto Z sia come schermi che rivelatori di fotoni

2. Effetto Compton

diffusione del fotone da parte di e⁻ quasi libero (i.e la cui energia di legame può essere trascurata)

 $\gamma + e^{-} \rightarrow \gamma + e^{-}$

N.B. - casi particolari

i.
$$\theta = 0 \rightarrow v' = v \quad T = 0$$

ii. $\theta = \pi \rightarrow hv' = \frac{hv}{1+2\epsilon} \quad T = hv \quad \frac{2\epsilon}{1+2\epsilon}$ (Compton Edge)

$$\mu vs. E_{\gamma}$$
and amento qualitativo)

N.B. - processo dominante per $E_{\gamma} = hv \sim 1 \text{ MeV}$

- basse energie (E_γ ~ keV): simmetria avanti indietro → Rayleigh (diffusione coerente sull'intero atomo) e Thomson (diffusione classica su e⁻ libero) → no trasferimento d'energia al mezzo: solo cambiamento di direzione
- energie relativistiche ($E_{\gamma} > 2 \text{ MeV}$): distribuzione fortemente asimmetrica con prominente picco in avanti

3. Produzione di Coppie

creazione di coppia e⁺/e⁻ per interazione del fotone nel campo coulombiano di un nucleo

 $\gamma + \mathcal{N} \rightarrow e^+ + e^- + \mathcal{N}$

- *N.B.* reazione inversa (crossing) della bremmstrahlung $e^{-} + \mathcal{N} \rightarrow \gamma + e^{-} + \mathcal{N}$
 - processo a soglia: $E_{\gamma} > 2m_e$ (~ 1 MeV)
 - processo dominante per $E_{\gamma} = hv > 2 \text{ MeV}$

48

Riassunto Interazioni

Processo	n. Atomico	Energia
Ionizzazione	Z	1 / β²
Bremsstrahlung	Z ²	Е

Fotoelettrico	$Z^{4} - Z^{5}$	1 / E ^{7/2} - 1 / E
Compton	Z	In E / E
Coppie	Z ²	In E